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Abstract 
The effect of protein binding on kidney hnction has been studied by investigating the renal accumulation and 
secretion of the hippurate analogue 2-methylbenzoylglycine in the isolated perfused rat kidney in the absence 
and presence of bovine serum albumin (BSA). 

Experiments were performed with either 2.5% pluronic or a combination of 2.2% pluronic and 2% BSA as 
oncotic agents; a wide concentration range (1-190 pg m L - I )  of 2-methylbenzoylglycine was studied. Tubular 
secretion appeared to be a function of the amount of unbound drug in the perfbate and was best described by a 
model consisting of a high and low affinity Michaelis-Menten term. Parameters obtained after the analysis of 
renal excretion data were maximum transport velocity for the high affinity site (TM,H) = 3.0 f 24, pg min- I ,  
Michaelis-Menten constant for tubular transport for the high affinity site = 0.5 f 0.8 pg mL- , maximum 
transport velocity for the low affinity site (TM,L) = 250 f 36 pg min- , and Michaelis-Menten constant for 
tubular transport for the low affinity site (KT,L) = 62 k 17 pg mL-’. The compound accumulated extensively in 
kidney tissue, ratios up to 175 times the perfusate concentration were reached. Accumulation data were best 
analysed by a two-site model similar to the model used to describe renal excretion. Calculated parameters were 
theoretical maximum capacity of the high affinity site (RM,”)=26 f 2 3  pg g-I, affinity constant for renal 
accumulation at the high affinity site (KP,H) = 0.2 f 0.4 pg d-’, theoretical maximum capacity of the low 
affinity site (RM,L) = 164O1f 1100 pg g- and affinity constant for renal accumulation at the low afiinity site 

The very high accumulation in kidney tissue could be explained by active tubular uptake, mediated by the 
secretory mechanisms involved, and dependent on the amount of free drug in the perfusate. This study shows that 
anionic drugs, subject to active secretion, may reach high concentrations in tubular cells even at low plasma 
concentrations. 

( K A , L )  = 60 f 58 pg d- . 

The kidney is an important organ in the elimination of exo- 
genous compounds from the body. Drugs may be secreted 
efficiently by various transport systems for organic anions and 
cations in the proximal tubules. During the process of secretion, 
the drug has to be transported across the proximal tubular cells. 
For organic anions, cellular uptake can be actively mediated by 
at least three different carrier systems with overlapping specif- 
icities at the basolateral membrane-the p-aminohippurate 
transporter and the related dicarboxylate and sulphate systems. 
Once inside the cell, the drug will enter the tubular lumen down 
its electrochemical gradient via an anion exchanger or a 
potential-driven pathway (Besseghir & Roch-Ramel 1987; 
Grantham & Chonko 1991; Pritchard & Miller 1993; Ullrich 
1994). As a result of the sequence of these events, drugs can 
achieve high intracellular concentrations. In addition to a diff- 
erence in basolateral and brush-border membrane transport, 
accumulation can be also caused by extensive intracellular 
binding or sequestration in certain cell organelles. The intra- 
cellular disposition of drugs can affect proximal tubular function 
or lead to tubular toxicity (Goldstein 1993; Koren 1989). 

If the extent of drug accumulation in proximal tubular cells 
depends on the efficiency of the secretory mechanism involved, 
factors influencing tubular secretion will also have an effect on 
the intracellular concentration. In this regard, the degree of 
plasma protein binding could be an important determinant in 
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tubular accumulation (Brater et a1 1992). Hippurates (benzoyl- 
glycines) are known to be cleared very rapidly by the kidney, 
mainly via tubular secretion. p-Aminohippurate is commonly 
used as a model compound for testing kidney function and for 
investigation of the anionic secretory system in the proximal 
tubule. Because of the efficiency of the secretory process, the 
renal extraction ratio practically equals 1, indicating that rend 
clearance and accumulation are insensitive to changes in protein 
binding and only influenced by changes in renal blood flow 
(Grantham & Chonko 1991; Levy 1980). The presence of 
serum protein, on the other hand, may even facilitate p- 
aminohippurate secretion (Besseghir et al 1989). Plasma protein 
binding of this compound is, however, low (Russel et a1 1989b). 
For this study we have chosen a hippurate analogue with 
relatively high plasma protein binding. In-vivo experiments in 
the dog showed that the high protein binding of 2-methylben- 
zoylglycine possibly limits tubular secretion, despite its high 
intrinsic clearance (Russel et a1 1989a). It is, therefore, 
supposed that changes in protein binding of this compound 
will result in an altered accumulation, although nothing is 
known about the extent of renal accumulation. 

This investigation was designed to examine the renal 
secretion and accumulation kinetics of 2-methylbenzoylglycine 
in the presence and absence of protein, by using the isolated 
petfused rat kidney. We have previously shown that the isolated 
petfused rat kidney is a useful means of investigation of renal 
secretion and accumulation of drugs (Cox et a1 1989, 1990; 
Boom et a1 1994). An advantage of this technique is that it 
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dies accurate determination of renal drug clearance over a 
i d e  concentration range, under controlled protein-binding 
&&ions  and in the absence of non-renal effects. 

Materials and Methods 

Materials 
plmnic F-108 was obtained from BASF (Amhem, The Nether- 
lm&), bovine serum albumin (BSA) from Boehringer 
w d e i m ,  Germany), inulin from Sigma (St Louis, MO, 
USA), and salicyluric acid from Merck AG (Darmstadt, 
w y ) .  2-Methylbenzoylglycine was prepared as described 

(Russel et al 1989a). All other chemicals were of 
aalytical grade and obtained either from Sigma (St Louis, MO, 
USA) or from Merck. 

Experimental procedure 
f ie  isolation and perfusion of the rat kidney have been des- 
cribed in detail elsewhere (Cox et al 1990). Studies were per- 
formed with perfusate containing either 2.5% pluronic or a 
combination of 2% BSA and 2.2% pluronic. In presence of 2% 
BSA, the addition of 2.2% pluronic was necessary to obtain an 
oncotic pressure comparable with that of the protein-free per- 
fusate containing only 2.5% pluronic. To maintain a perfusate 
pressure of approximately 90 mmHg, a low glomerular filtra- 
tion rate (GFR) resulted (between 230 and 350). For the 
determination of GFR, cyanocobalamin (20 pg mL-') was 
added to the perfusion fluid. GFR was monitored on-line using 
a micro flow-through cuvette in which the cyanocobalamin 
concentration was measured colourimetrically (Brink & Slegers 
1979). Because cyanocobalamin binds to BSA, inulin (100 pg 
mL- ' in perfusion fluid) was used to determine the GFR in the 
experiments with 2.2% pluronic and 2% BSA, as described 
below in Analysis. Before the experiment the perfision fluid 
was filtered through a 0.22 pm pore-size cellulose acetate- 
cellulose nitrate membrane filter (Millipore, Bedford, MA, 
USA). The perfusion fluid containing BSA was filtered 
through a similar 3.0 pm pore-size membrane filter (Schleicher 
8c Schuell, Dassel, Germany). 

Experimental design 
The experimental period was 120 min and the experiment was 
started after 30 min of control. During the control period, the 
volume of the circulating perfusate was 500 mL, from which a 
sample of 5 mL was drawn. After the control period, the kidney 
W a s  connected to perfusion fluid with a total volume of 250 mL, 
in which 2-methylbenzoylglycine was already dissolved. Doses 
added to the perfused kidneys were: 0.625, 1.875, 6.25, 18.75, 
37.5 and 62.5 mg 2-methylbenzoylglycine. Urine samples were 
collected during control and experimental periods over 1 0-min 
intervals. Perfusate samples (300 pL) were drawn at the mid- 
point of the urine collection intervals. Two additional perfusate 
samples were taken, one at the beginning of the experiment and 
one at the end. At the end of the experiment the kidney was 
removed from the system, blotted and weighed. Urine, perfusate 
a d  kidney samples were stored at - 20°C until analysis. 

Analysis 
Urine and perfbate samples were analysed for glucose and 
Various electrolytes as described previously (Cox et al 1990). In 

the presence of 2% BSA, perfusate and urine samples were 
analysed also for inulin and protein content. The Bio-Rad 
Protein Assay from Bio-Rad (Munich, Germany) was used for 
the determination of protein. Inulin was determined according 
to a previously published method (Hey-rovski 1956). The con- 
centration of 2-methylbenzoylglycine in perfusate, urine and 
kidney samples was determined by means of reversed-phase 
high-performance liquid chromatography (HPLC), as described 
below. 

HPLC assay 
HPLC was performed with a 1084B liquid chromatograph 
(Hewlett-Packard, Boblingen, Germany) equipped with an HP 
79841A auto-injector, HP 79850B LC terminal and a Spectro- 
flow 773 UV absorbance detector (Kratos analytical instru- 
ments, Ramsey, NJ, USA) at an operating wavelength of 
228 nm. Chromatography was performed on a stainless steel 
column (10 cm x 4.6 mm id.) packed with LiChrosorb RP-18 
(particle size 5 pm). The mobile phase consisted of 15% me- 
thanol and 85% 0.01 M phosphate buffer, pH 2.6. The flow rate 
was 1 mL min-'. Salicyluric acid solution (0.1 mg mL-'; 
10 pL) was added as internal standard to all samples (100 pL). 
After addition of diethyl ether (1.2 mL) the samples were 
vortex-mixed for 10 s and centrifuged for 10 min at 2000 g. 
When BSA was present in the perfusion fluid, the samples were 
fmt treated with HCI (6 M; 50 pL), vortex-mixed for 10 s and 
centrifuged at 2000 g. Supernatant (100 pL) was subsequently 
removed and diethyl ether (1.2 mL) was added. The samples 
were again vortex-mixed and centrifuged. The diethyl ether 
layer was then transferred to glass tubes on ice and evaporated 
to dryness with air. The residue was dissolved in mobile phase 
(200 pL), and 10 or 20 pL was injected into the HPLC system. 
Concentrations were determined by comparing the peak area 
ratios of 2-methylbenzoylglycine and internal standard with the 
ratios of a calibration curve, prepared by adding various 
amounts of 2-methylbenzoylglycine to blank perfirsate. The 
concentration of 2-methylbenzoylglycine in kidney tissue was 
determined in a similar manner. The kidney was homogenized 
in distilled water (5 or 10 mL) with a Polytron homogenizer 
(Braun, Melsungen, Germany) on setting 10 for 2 x 60 s. In- 
ternal standard (0.1 mg mL-'; 40 pL) and HCI (6 M; 100 pL) 
were added to this homogenate (450 pL). After protein preci- 
pitation and centrifugation at 2000 g, supernatant (200 mL) 
was extracted twice with diethyl ether (2 x 1.2 mL), vortex- 
mixed for 10 s and centrifuged for 10 min at 2000 g .  The di- 
ethyl ether layer was added to ice-cold glass tubes and evap- 
orated to dryness. The residue was dissolved in mobile phase 
(500 pL) and 10 or 20 pL was injected into the HPLC system. 
Concentrations were calculated by comparing peak area ratios 
of 2-methylbenzoylglycine and internal standard with a cali- 
bration curve of spiked samples of blank kidney homogenates 
with internal standard and various amounts of 2-methylben- 
zoylglycine. Linear correlations were obtained in all cases 
(R2 > 0.98). 

Protein binding 
Protein binding was determined by ultrafiltration as described 
previously (Russel et a1 1987). The ultrafiltrates were treated 
and analysed in the same way as the urine samples. Perfusate 
protein binding was calculated according to the following 
equations, assuming one class of binding site: 
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Table 1 .  Functional parameters of the isolated perfused rat kidney in control experiments and after administration of 
62.5 mg 2-methylbenzoylglycine (2-MBG). 

Parameter 2.5% Pluronic 2.2% Pluronic/Ph BSA 
Control" 2-MBGb Controla 2-MBGb 

FE sodium (%) 
FE potassium (%) 
FE glucose (%) 
FE magnesium (%) 
FE calcium (%) 
HzO re-absorption (%) 
Urine flow (pL min-1) 
GFR (pL min- ') 
Urinary pH 
Perfusate flow ( m ~  min-') 
Pefisate pressure ( d g )  

2.9 f 0.6 
3 8 f  14 

7.3 f 2 . 1  
4 2 f 1 0  

3 . 5 f 1 . 3  
9 4 f  I 
1 8 f 3  

277 f 35 
5.8 f 0.3 
1 5 f 2  
8 9 f 8  

2.2 f 0.9 3.1 f 1.7 4.0 f 1.8 
7 3 f l l *  1 4 f 6 t  51 f 5 *  

7.3 f 1.2 4.1 f 2.0t 7 . 0 f 2 . 1  
4 7 f 6  1 7 f  127 37 f 5* 

4.0 f 0.7 2 . 4 f  1.3 4 . 5 f  1.1* 
9 3 f 1  9 3 f l  9 2 f  1 
23 f 2* 1 6 f 3  2 4 f 2 *  

327 f 24* 232 f 53t 298 f 25; 

14.3 f 0.3 23 f 2 t  2 3 f 3  
81 f 4  9 3 f 8  1 0 2 f 7  

6 . 0 f O . l  6.2 f 0.2t 6 . 3 f 0 . 1  

Mean values f s.d. over the period 3G120 min are given. FE, fractional excretion. GFR, glomerular filtration rate. 
*P < 0.05 compared with control experiments; tP < 0.05 compared with the corresponding experiments without BSA; 
"n=12; bn=4. 

c = c u  + P . CU/(K, + CU) (1) 

C u = f u . C  (2) 

in which C is the total perfusate concentration (pg mL-'), Cu 
is the unbound drug concentration (pg m I -  I ) ,  fu is the fraction 
of unbound drug in perfusate, P is the total concentration of 
protein binding sites (pg mL-I) and & is the dissociation 
constant of the drug-protein complex (pg d-'). 

Renal excretion model 
For an adequate description of the renal clearance of 2-meth- 
ylbenzoylglycine by the isolated perfused rat kidney, a model 
was necessary in which tubular secretion was expressed by two 
Michaelis-Menten terms. Assuming that renal excretion of 2- 
methylbenzoylglycine is dependent on unbound perfusate 
concentrations, the renal clearance of this compound can be 
expressed as: 

The renal excretion rate (RR) is: 

RR = CL, . C (4) 
where CLR is the renal clearance (mL min-'), RR is the renal 
excretion rate (pg min-I), QGF is the glomerular filtration rate 
( m ~  min-'1, c is the total drug concentration in perfusate 
(pg mL-'), Cu is the unbound drug concentration in perfusate 
(pg mI-'), fu is the fraction of unbound drug, T, is the 
maximum transport velocity (pg min-I), KT is the Michaelis- 
Menten constant for tubular transport (pg mL-') for the high 
(H) and low (L) affinity site, and F is the fraction of excreted 
drug reabsorbed. 

Renal accumulation 
The concentration of 2-methylbenzoylglycine in the kidney 
(C,) was expressed as the amount of drug per unit weight of 
tissue. The concentration in kidney tissue divided by the con- 
centration in perfusate at the end of the experiment (CU,~), 
resulted in an accumulation ratio (kidney:perfusate ratio). If 
accumulation in kidney tissue is considered to be a result of 
both active and passive transport processes, the renal accum- 
ulation ratio can be described as follows: 

(5 )  
CT/CU. z = (RM.H/(KA,H + CU, 4 )  

+(RM,L/&.L + CU, z)> + a 

where RM is the theoretical maximum capacity (pg g-I) and 
KA is the affinity constant for renal accumulation (pg mL-I), 
for the high (H) and low (L) a f i i t y  site, and a is the ratio 
CT/CU,Z due to passive transport. 

Data analysis 
Renal excretion rate and accumulation data were analysed ac- 
cording to equations 4 and 5 by the nonlinear least squares 
regression program PCNONLM (Metzler & Weiner 1986). The 
goodness of fit was evaluated as the deviation between the 
observed and model predicted values as R2 = 1 - Z(Dev)2/ 
Z(Obs)2, where Z(Obs)2 is the observed sum of squared 
observations and C(Dev)' the sum of squared deviations. The 
weighted residual sums of squares of the renal excretion and 
accumulation models with two Michaelis-Menten terms were 
compared with the residual sums of squares of the conespond- 
ing models with only one term, and significance was 
determined with an F-test (P < 0.05). All data are expressed 
as mean f s.d. Statistical differences between means were 
determined with Student's t-test, in which the level of 
significance was set to P < 0.05. 

Results 

Effects on kidney function 
The renal functional parameters obtained from 12 control ex- 
periments in the absence and presence of BSA, and after 
administration of the highest dose of 2-methylbenzoylglycine, 
are listed in Table 1. The control isolated perfused rat kidney 
experiments with 2% BSA in perfusate showed a significantly 
lower GFR and fractional excretion of potassium, glucose and 
magnesium, and a significant increase in urinary pH, in com- 
parison with the control experiments without BSA. To maintain 
a perfusate pressure of 90 mmHg, it was, furthermore, neces- 
sary to increase the perfusate flow significantly. 

No negative effects on kidney function were observed with 2- 
methylbenzoylglycine. Only the highest dose altered rend 
function, as is shown in Table 1. Under both experimental 
conditions, a significant increase in GFR, urine flow and 
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wtional  excretion of potassium were found for this com- 
pou"d, as compared with the controls. In the experiments with 
BSA, the fractional excretions of magnesium and calcium were 
also significantly increased. 

protein binding 
m e i n  binding was determined for each dose of 2-methylben- 
mylglycine administered, and all data were pooled and analysed 
according to equation 2. Parameters obtained were a dissocia- 
tion constant, L of 58 f 16 pg m I - '  and a total concentra- 
tion of BSA binding sites, P, of 70 i 16 pg d-' (n = 36). The 
binding of 2-methylbenzoylglycine decreased gradually, with 
fractions unbound between 0.4 and 0.7 over a concentration 
range of 0.5-250 pg mL-'. The experiments with 6.25 and 
37.5 mg 2-methylbenzoylglycine were performed with another 
batch of BSA. This resulted in different binding, with fractions 
unbound of 0.38 and 0.35, respectively. 

Renal excretion and accumulation 
2-Methylbenzoylglycine was slowly eliminated from perfusate. 
Fig. 1 shows the mean unbound perfusate concentration and 
corresponding excretion rate data as functions of time under 
both experimental conditions. All doses gave log-linear con- 
centration-time curves. The urinary excretion rate increased 
rapidly after addition of 2-methylbenzoylglycine, followed by a 
gradual decrease. The presence of protein in perfusate resulted 
in a lower renal excretion rate. Renal handling data for 2-meth- 
ylbenzoylglycine are presented in Table 2. The renal clearance 
was higher than the clearance by glomerular filtration corrected 
for the fraction unbound (CLR/GF > l ) ,  indicating active 
tubular secretion. A decrease in CLR/GF at higher perfusate 
concentrations was in accordance with saturable tubular secre- 
tion. The CLR/GF values in the presence of BSA surpassed 
those obtained from the experiments with 2.5% pluronic, sup- 
porting the view that the renal excretion of 2-methylbenzoyl- 
glycine is dependent on unbound drug concentrations. A linear 
plot of the renal excretion rate against unbound perfisate 
concentration, a so-called tubular titration curve, is presented in 
Fig. 2. A two-site model dependent on unbound drug con- 
centration in perfusate fitted the data best (F-test, P < 0.05). 
The line through the data points was obtained after analysing 
renal excretion data over the period 30-90 min, according to 
quation 4. The results show that renal excretion was composed 
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FIG. 1. 2-Methylbenzoylglycine perhate concentration and urinary 
excretion rate as a function of time. Closed and open symbols represent, 
respectively, experiments without and with BSA in the perfusate. 0 0 
0.625, A A 1.875, 0 6.25, V V 18.75, + + 37.5, 4 0 62.5 mg 2- 
methylbenzoylglycine. All data points are means of four experiments. 
For the sake of clarity standard deviations were omitted from this figure; 
they varied between 2 and 30% for pehsate concentration, and 
between 10 and 35% for renal excretion rate. 

of glomerular filtration and active tubular secretion. At high 
perfisate concentration the titration curves paralleled the 
glomerular filtration line, indicating that tubular secretion was 
saturated and reabsorption was negligible (F = 0 in equation 3). 
Because renal excretion was dependent on unbound drug con- 
centration in perfusate, clearance data from both experimental 
conditions could be pooled and analysed simultaneously. The 
kinetic parameters of the two transport systems involved in 
tubular secretion of 2-methylbenzoylglycine are listed in Table 
3. The 2-methylbenzoylglycine concentration in kidney tissue 
was determined at the end of each experiment (Table 2). A plot 

Table 2. Renal handling of 2-methylbenzoylglycine in the isolated perfused rat kidney. 

625 - 

+ 
1875 - 

+ 
6250 - 

+ *  
18750 - 

+ 
37500 - 

+ *  
62500 - 

+ 

Perfisate concn fu 
(Pcg Id- '1 

1 .2f0 .2  - 

1.1 f0.1 0.42 
2.5 f 0.8 - 
2.1 f 0 . 3  0.42 
1 0 f 3  - 

1 9 f  1 0.38 
4 4 f 8  - 

5 0 f 8  0.52 
8 5 f  16 - 

1 2 0 f 6  0.35 
189f20  - 
176f  16 0.73 

Excretion rate 
b g  min-') 

5.3 f 1.3 
3.1 f0.5 
1 9 f 6  
1 5 f 3  
4 4 f 8  
2 7 f 3  

119f  15 
115f16  
203 f 12 
1 1 6 f 8  
282 f 22 
194 f 22 

CLR/GF 

12.2f 1.2 
22.9 f 1.5 
17.5 f 0.5 
44.2 f 2.7 
1 1.6 f 0.8 
10.5 f 0.5 
7.0 f 0.3 

14.8 f 0.6 
7.3 f 0.6 
9.0 f 0.5 
4.3 f 0.3 

. 4.4 f 0.3 

Amount in kidney 
( P g  g') 

2 4 f 2  
2 6 f 5  
4435 10 
77 f 32 

220 f 50 
200f  10 
650 f 130 
590 f 80 
910f240 
710f  140 

1410f 180 
1120f140 

Mean data over the period 30-90 min are given for both experimental conditions (n = 4). fu, fraction unbound. CLR/GF, renal 
clearance of 2-methylbenzoylglycine corrected for glomerular filtration rate and fraction unbound in perfusate. *Another batch of 
BSA was used. 
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FIG. 2. Tubular titration curve of 2-methylbenzoylglycine. Renal 
excretion rate and rate of filtration as a fhction of concentration 
unbound in perfusate. Data obtained over the period 30-90 min of both 
experimental conditions were pooled and analysed simultaneously. The 
solid line represents the fit according to equation 4, the dashed line 
corresponds to the clearance by glomerular filtration only. 0 Without 
BSA, 0 with BSA. All data points are means of four experiments. 

Table 3. Kinetic parameters for renal handling of 2-methylbenzoyl- 
glycine. 

Parameter High affinity site Low affinity site 

T, (jig min- I )  
K, (ue mL-9 

3.0 f 2.8 
0.5 f 0.8 

250 f 36 
6 2 f  I7 

1640 f 1100 
60 f 58 

~ ~~ ~~ ~ ~ ~ ~~~~ 

Parameters were obtained after fitting equations 4 and 5 to the data. 
Ratio of concentration in kidney tissue over unbound perfusate 
concentration (CT/C,) due to passive transport (a in equation 5) was 
determined to be 2.4 f 2.2. 

of kidney:perfusate ratio vs unbound perfusate concentration is 
illustrated in Fig. 3. At low pehsa te  concentrations very high 
accumulation ratios were observed; these decreased at increas- 
ing perfusate concentrations, indicating that a saturable com- 
ponent is involved in cellular uptake. Kinetic parameters for 
renal accumulation were obtained after fitting equation 5 to the 
accumulation data of 2-methylbenzoylglycine (Table 3). 

Discussion 

The kidneys used in this study showed a good renal function- 
ing, and were stable for at least 2 h. Changes in kidney function 
on addition of BSA to the perfusion fluid are in accordance with 
those reported by Maack (1980) and Bekersky (1983). The 
ffactional excretion (YO) of potassium, glucose and magnesium 
decreased, indicating that kidney viability was increased in the 
presence of 2% BSA in control experiments. 

Although the colloid osmotic pressure was comparable in 
both experimental perfusion fluids, a higher perfusate flow was 
necessary with albumin in the perfusion fluid, to maintain the 
perfusate pressure at approximately 90 mmHg. GFR decreased 
in the presence of 2% BSA, owing to enhanced oncotic pressure 
within the glomerulus and peritubular capillaries; this is in 
agreement with the concept of Starling (Maack 1980; Schurek 
& Alt 1981). 

CL,/GF for 2-methylbenzoylglycine was many times higher 
than 1 (Table 2), indicating that clearance proceeded via 

2oo 1 d 
0 

150 

m 2 100 

a 

v 1 ,  
0 50 100 150 200 

Unbound concn (pg rnL-l) 

FIG. 3. Accumulation of 2-methylbenzoylglycine in kidney tissue. The 
kidney:perfusate ratio is plotted against the unbound perfusate 
concentration. 0 Without BSA, 0 with BSA. All data points are for 
individual kidneys; n = 24 for both experimental conditions. 

glomerular filtration and pronounced active secretion. As a 
result of the large perfusate volume (250 mL) in proportion to 
the renal clearance (1-7 mL min-I), the decline in pehsa te  
concentration was slow. Tubular secretion followed Michaelis- 
Menten kinetics and, interestingly, a model with two affinity 
sites was necessary to describe the renal excretion rate. A low 
and high affinity site of the basolateral p-aminohippurate 
transporter seems very unlikely, as numerous membrane studies 
have never provided evidence indicating more than one site. 

A two-site model is consistent with high affinity, low 
capacity uptake across the basolateral membrane and sub- 
sequent low affinity, high capacity transport across the brush- 
border membrane into the tubular lumen, as was proposed 
previously for the renal excretion of hsemide  in the isolated 
perfused rat kidney (Lee et a1 1986). The similarity of the 
kinetic parameters for secretion and accumulation strongly 
suggest, however, that uptake takes place at the basolateral 
membrane of the proximal tubule, and that both saturable steps 
are connected with transport across this membrane. An 
explanation that could fit in this view may be that 2- 
methylbenzoylglycine is transported with high affinity via the 
p-aminohippurate carrier and that it has also a low affinity for 
one of the other basolateral organic anion transporters, i.e. 
dicarboxylate or sulphate system. 

The results of the experiments in the presence of BSA show 
that renal excretion and accumulation of 2-methylbenzoylgly- 
cine was dependent on unbound drug concentration; in contrast 
with in-vivo studies in the dog, however (Russel et a1 1989a), 
the compound is not efficiently cleared by the kidney. This is 
most probably a consequence of the high perfision flow, 
resulting from a lack of red blood cells and maximum dilation 
of the vessels of the perfused kidney. In presence of 2% BSA, 
an even higher flow (23 vs 15 mL min-') was necessary to 
sustain normal perfusate pressure, because of lower perfusate 
viscosity. Similar to the in-vivo situation, the intrinsic secretion 
clearance of 2-methylbenzoylglycine in the isolated perfused 
rat kidney (CL,,, = TM,H/KT.H + TM.L/KT,L) was high: 
10 mL min-'. As a result of the high perfusion flow, however, 
the renal extraction ratio, calculated as CL,, divided by the 
sum of CL,,, and perfusate flow, is low. Depending on the 
experimental conditions the extraction ratio varied between 
0.3 and 0.4, and as a result, 2-methylbenzoylglycine behaved 
a low clearance drug. Lee et a1 (1988) have reported similar 
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for the diuretic chlorothiazide, which also shows high 
extraction in-vivo. In the isolated perfused rat kidney, 

however, this diuretic is cleared as a low clearance drug as a 
mu]t of the high perfusate flow. 

contrast with what was found in rabbit renal proximal 
,&&s for p-aminohippurate (Besseghir et al 1989), BSA did 

enhance tubular secretion of this hippurate analogue. Our 
results show that kidney:perfusate ratios did increase in 
psence  of BSA at low perfusate concentration, however; this 
could be explained by a strongly reduced free concentration of 
2-methylbenzoylglycine in perfusate rather than a stimulatory 
effect of BSA. At low perfusate concentrations, accumulation 
,&os up to 175 times the perfusate concentration were 
observed. Such high accumulation ratios have never yet been 
reported for an in-vitro renal perfusion system. It is obvious that 
anionic drugs, pharmacologically less inert than hippurates, that 

subject to tubular secretion, may have harmful effects on 
kidney functioning even at low plasma concentrations. 

In conclusion, 2-methylbenzoylglycine is handled as a low- 
clearance drug in the isolated perfused rat kidney and, as a 
consequence, renal clearance appeared to be a function of the 
unbound drug concentration in perfusion medium. Renal 
tubular excretion data were described best by a model in 
which tubular secretion is composed of a high and a low affinity 
Michaelis-Menten term. The very high accumulation in kidney 
tissue could be explained by active tubular uptake, mediated by 
the secretory mechanisms involved. This study shows that 
anionic drugs, subject to active secretion, may reach high 
concentrations in tubular cells even at low plasma concentra- 
tion. 
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